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Cumulant-Based Adaptive Multichannel Filtering
for Wireless Communication Systems with
Multipath RF Propagation Using Antenna Arrays

Massimiliano (Max) MartoneMember, IEEE

Abstract—A method based on high-order statistics is proposed weights control): this made the idea not very attractive in terms
to mitigate the performance degradation caused by multipath RF  of cost and reliability. Recent progress in digital technology
propagation in a mobile radio communication system using a ,qyides solutions to difficult implementation problems caused

linear antenna array at the base-station receiver. It is shown by hiah lexity algorith f danti ¢
that an overdetermined system of linear equations (involving y high-compliexity algorthms for adaptive antennas.

only cumulants of the received baseband digitized signal) can The space-time filtering approach used in this paper re-
be obtained to perform noniterative deconvolution. An efficient sults in a discrete-time single-input—multiple-outputs (SIMO’s)

adaptive algorithm based on square-root decomposition is pro- model that must be deconvolved (equalized). Standard tech-
posed to avoid numerical problems when real-time tracking of iqyes for equalization are based on an equivalent minimum
moving transmitters is needed. . .
phase (MP) system modeling approach because they exploit

only the second-order statistics (SOS’s) of the signal. The

I. INTRODUCTION minimum-mean-square-error (MMSE) criterion, for example,

HE USE of antenna arrays in wireless communicatiodg based on SOS only. However, the most part of all real-
T can theoretically improve system performance in tern¥éorld channels do not present the MP condition. Motivated
of signal quality and capacity. Particularly, a multiclemerfly these observations, the equalization of nonminimum phase
antenna at the base-station receiver of a cellular system is dhi&P) channels using higher than second-order statistics
to compensate signal degradations in the mobile to base IifkOS) has stimulated incredible interest during the last ten
[12], [13]. It is important to observe, however, that a practiciiears. Moreover, HOS-based identification/equalization meth-
and definitive solution for digital cellular systems employingds based on high-order cumulants are theoretically insensitive
time-division multiple access (TDMA) does not exist at thi§0 Gaussian noise. Many algorithms were studied for the
time. identification/deconvolution of finite-impulse response (FIR)

In TDMA systems, data dispersion can span several Symbmgdels based on third- or fourth-order cumulants. Nonlinear
as a consequence of frequency-selective fading caused byR§thods are characterized by equations, where output cumu-
mu|t|path propagation_ In addition, propaga’[ion Characteristilﬁ'lts and parameters of interests are nonlinearly related. Linear
may change in time due to the motion of the transmitter. THaethods use particular cumulant slices, so that the relation
received signal is composed of the original plus several deecomes linear. It is well known that nonlinear methods
layed attenuated replicas, and each replica reaches the ant&&faobtain optimum performance (minimum variance), but
with a different attenuation and angle of arrival. Space-onfjnce the solution of the nonlinear system involves always
processing methods are not effective because intersymBbl iterative search, one is always trapped with local min-
interference (ISI) cannot be compensated using the traditioi#g of the squared error. Linear methods can obtain good
beamforming architecture. A careful combination of space aRgrformance when overdetermined systems of equations are
time filtering may result in an extremely efficient method t&ised. Most of the works describing HOS-based algorithms,
solve ISI caused by multipath fading. This subject was studi@@wever, were never applied to realistic environments so that
in great detail in [1] and [11], where it was shown that theventual advantages of these ideas in the solution of practical
use of joint diversity/equalization methods offers significaritroblems are not clear. It is well known, just to name the
advantages with respect to traditional systems. The structfii@in objection to the use of HOS, that high-order cumulants
we propose and analyze is different from the optimum scherfigtimates require considerably more samples than traditional
since a digital filter is provided for each diversity branch. Thigorrelation estimates, and, in addition, cumulants estimates are
architecture was proposed by antenna arrays designers afigcted by a larger variance of the estimation error. There is
successfully applied on radars more than a decade ago a@neeffort in our work in trying to apply an HOS algorithm
method to increase bandwidth resolution [7]. The implemetf & more realistic scenario and to understand the feasibility

tation was entirely based on analog circuitry (delay lines afdl practical implementations. The only blind algorithm well
studied in its practical implementation [14] is the constant

Manuscript received July 24, 1995; revised November 18, 1996. modulus algorithm (CMA) whose demonstrated misconver-
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The method proposed in this work is based on the saradaptive scheme described in Section IV is designed for time-
idea introduced in [16], subsequently developed in severariant channels. The complex baseband modulated signal is
algorithms for scalar deconvolution. It is our contribution inn(t) = Xy (k) pi.(t — kT), wherez(k) = ay, + jby are the
this work to generalize some of the mathematical expressicmmplex symbols defining the signal constellation used for
derived in [3] and [20] as they apply to the multichannethe particular digital modulation schemg..(¢) is a square-
complex case. The resulting algorithm is blind in the sense thabt-raised cosine-shaping filter with rolloff factor 0.35, and
it does not require any training sequence or signal to achie¥as the signaling interval. The received signal throughithe
signal detection. Moreover, no angle of arrival needs to Ipath can be represented as

estimated, which makes the method very attractive because the oo
array is not sensitive to calibration errors. The performance of U;(t) = / filt = m)m(7) dr
the method is investigated using a square-root approach for the —°
adaptive implementation in the case of a TDMA system with D o p .
. . ) o . — PimePim m(t—’r‘ )6127rf0(t Tim) 2)
frequency-selective Rayleigh fading. It is important to point ‘ e L

out that we focus in this work on the space-time processing . . o
of signals severely distorted by multipath frequency-selectiVé€réwo = 27 fo is the carrier frequency. The contribution of
fading, and we do not analyze the effect of adjacent chanfié¢ signal propagated through tik path with angle of arrival

sin @

interference. The multiple-sources scenario can be treattdand phase difference™>**=x" from the first antenna

similarly generalizing the main idea introduced here. element to thdth element can be written (we are neglecting
The paper is organized as follows. In Section II, we descriltee additive noise term) as

the system model for the propagation channel and the discrete-

I
time model. In Section I, the set of equations necessary to ri(t,0;) = ei<ot Z it = Tim)
solve the deconvolution problem is derived. In Section IV, the et 7
adaptive implementation is described, while in Section V the . o i2mld(sin6:/X) Lidim

results of the simulations are shown.
wheree; »,, = =27 foTi m + i m- Sampling at symbol raté’,
we can compact the effect of the RF propagation channels at

) . o . the input of the digital filters at baseband as
We assume a mobile transmitter communicating with a base

Il. SYSTEM MODEL

station with ak -element antenna. Each element of the antenna yi(n) = Z hi(m)xz(n —m) + ni(n)

has a digital filter with, = L, — L, +1 complex weights. The m

transfer function of the antenna, whose structure is assumed =12 K 3)
to be linear with evenly spaced elements, is expressed as \yere ni(n) is Gaussian noise ank(m) = h;(m7) is the

Lo K T-sampled impulse response
Hw,0) = Z eImeTa Z wy(m) e (1) N P
m=L, =1 hi(t) = Z Z Prmp(t = T m) P
=1 m=1

where$ = (2rdsinf/)), d is the distance between adjacent
antenna elements is the wavelength of the signa, is the
arrival angle of the signal (DOAY; is the delay between n this expression;,(t) is the raised cosine function with an
wi(m) andw(m + 1) for { = 1,2,---, K andm = Ly, Li +  excess bandwidth of 0.35 [2] obtained because we assume that
1,--+,Ly—1,andH(w, §) is the antenna pattern as a functiofe receiver filters, ., (¢) at each antenna are square-root-raised
of § and the frequency response as a functiowoMultipath  csine filters perfectly matched to the transmitter filbgrgt).
propagation can be characterized as\aipath channel whose |, the » domain, the transfer function (3) can be expressed as
ith path(: = 1,2,.--, N) is represented by &, received, -

delayed, and attenuated replica of the signal. The impulse 7:[(2) _ Z H()z™" 4)
response of théth path can be expressed as

. g—d2mid(sin6;/X)

L N where the organization of the,;(z) polynomials ¢ transforms
Fi®) =" pign &V 60t Tim) of h;(k)) in H(z) is given by
m=1

¥, T
where 7; m, pim, and ¢, ,, are the delay, amplitude, and HMz) =Mau(z) Halz) - Hi(R]
phase of thenth delayed signal in théth path, whileé(¢) If we stack the outputs of the sensors according to the
is the delta function. Observe that we are assuming nawganization ofH(z),y(t) = (y1(t),---,yx(t))?, whosez-
for the derivation a time-invariant channel while instead weansform vector polynomial isV(z), and we neglect the
should assume that; ,,,(t), p: . (t), and ¢; ,,(¢) are time- additive noise term, we can write
varying parameters. This condition holds in many applications Y
of interest since the observation interval is often much shorter V(z) = H(z)A(2)
than the coherence time of the channel which characterizes titeere X'(z) is the z transform ofz(n). This is a one-input
time-variant behavior of the propagation media. However, thé-output multichannel moving average model (or SIMO).
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A. Distortionless Reception A. Key Assumptions

To recover the input signals, a line#f-input one-output  The important assumptions necessary to derive the algo-
filter as in (1) with tap spacind; = 7 and defined as rithm are as follows.
W(z) = /2, W(v)z~" is applied to the downconverted 1) AS1: the transformation in (3) represents a stable sys-
and flltered outputs of the sensors. The main objective for  tem, but possibly NMP, satisfying:
W(z) is to achievedistortionless receptianf we define a) all channeld;(k),i = 1,2, - -, K, which have finite

W(2) = Wi (2) Wolz) -+ Wiz supportg;
(2) = Ni(z) Walz) K () b) %:(0) # 0 for somej;
distortionless receptiomeans that c) hi(q) # 0 for somet;
L d) Hi(z) = XI_, hi(v) z7%, for i = 1,2,--- K,
W(z)H(z) = 1. (5) which have no common zeroes.

AS2: the complex sequendgs(n)} is constituted by
random variables identically non Gaussian distributed
and statistically independent, and the cumulants of

The systemA(z) is required to be bounded-input-bounded- 2)
output (BIBO) stable. The solution (5) is achievable only
ideally. Since the input signal constellations are symmetric, o
the statistics of the input signal(t) reflect the same sym- {a(n)} satisfy:
metry. Moreover signal reconstruction is possible only up to a) cumlz(n),z*(n)] = 72 > 0;

a constant delay, due to the stationarity of the input process ~ B) cum[z(n),z*(n), z(n),z*(n)] = 74 # 0;
The recovered signals will be subject to a phase ambiguity and ~ €) €um[z(n), z(n)] = cum[z*(n), z*(n)] = 0.
a delay. The best possible result for practididtortionless  Assumption AS1 is necessary because it assuredisher-

receptionby a means of a linear filter is tionless receptiorcondition for 7(z). The relation between
L ‘H(z) and W(z) can also be expressed as
W(H(z) = D(2) ®) -
6 = HL,qw (7)
where
where

D(z) = i 27™ g € [—7, 7], no integet

£ = ( : '75(_1)75(0)75(1)7 o ')T

hel x (L + g) impulse response of the cascaded system
2YH(2)

w= (wlvwgv"'vw};)Tv w; = (wl(Ll)vva(LQ))T

We say that?fl(z) satisfies thedistortionless receptiorcon- o
dition if for H(z) there exists a BIBO stabldistortionless W
receptionfilter W(z).

=

IIl. DESCRIPTION OF THEMETHOD and 1x KL.Hy, , is the(L + ¢) x KL generalized Sylvester

We shortly recall that the high-order statistical propertigmatrix
of a process are commonly described in the time domain b)HL _ [H(l) g2 H(K)]
cumulants [6]. Cumulants of interest here are fourth-order™ ¢ L "L L.

cumulants of complex zero-mean stationary processes hi(0) hi(1) -+ hi(g) O et
defined as O 0 h(0) hi(1) - hig)
cum|z(ny ), z(ng),x* (ng),z*(n4)] La ™ : . . - - )
= E{a(ny)x(ng)x(ns) w(na)"} : 0 hi(0) hi(l) - hi(g)
— E{x(n1))z(n2)} E{x(nz)*z(ns)*} The rank of Hr, plays a crucial role in the existence
— E{z(n))z(n3)*} E{z(n2)z(ny)*} of a stable BIBOdistortionless receptiorfilter W(z). The
— Ela(n))a(ny)*} E{z(ns)z(ns)*} relationship between the rank of the generalized Sylvester

matrix Hy, , and thereducibility of 7(z) has been studied in

Second-order cumulants are defined as multivariable control literature [9], [10]. Am x n polynomial
. . matrix M(z) (with m > n) is said to beirreducible if there
cum([z(na), z*(n2)] = E{a(ny)z(n2)*}. is non x n matrix B(z) with a nonconstant determinant such

The properties of cumulants that we exploit are: that M(z) = M(z)B(z), where M(z) is alsom x n. It is
’ proved in [9] thatH(z) is irreducible if and only if it is full
1) LIN rank for anyz (which is expressed in our case by AS1).
1 T The desired solutiog that completely restores the informa-
oum[En f(n)e(n), -] = Zn f(n) cumz(n), -, | tion signal up to the delay, is 6. The generianth element
2) STATINDIf the samples of a process can be divided intef the vectoré is é(m), if we neglect the phase shiffy and
two (or more) statistically independent subsets and th#e delayno. Formally, we have to solve the minimization
their joint cumulants are zero. problem

It is also well known that if the process samples are jointly

: N ’ win ||Hr @ - 8% (8)
Gaussian, then their joirith-order cumulant is zero fdr > 2. w
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This is a linear least-squares estimation problem, whose solinis expression is evidently different from zero only for
tion requiresH, , to be full rank. First, we observe that by0 < n; < ¢. According to the assumed model and since we are
AS1, H(z) is irreducible. Second, we specify the followingooking for the noncausal filter that verifies (10), we can write

lemma. * *
Lemma 1: If AS1 is valid, H; , is full rank for anyL = Ea (k)i (k + 1) (k +n*1)yi4 (h+m)"} .
Ly—Li +1> [¢K/K —1]. ~ E{z(k)yi, (k + n1)"yi, (k + n1)yiy (b +n1)"}
Proof: Let us assume thald(q) is constituted by (q),
I =1,2,---,K elements and thab;(q) is an element of = Z Z wi, (k1)
H(q) different from zero (which exists due to AS1). Let =l k=l
b(n) = (bi(n)forn =0...,g—1andB(z) = £L_, b(n)z™". x EXyi, (k = k1)yi, (k 4 n1)*
The degree of3(z) is ¢. By Corollary 1 of [10], H(z) is Yis (K +n1)y, (k+n1)"} (12)

irreducible if and only ifL > [gK/K —1 d
ireducible if and only ifL > [qf/ Tan The fourth-order moments are related to the fourth- and

rank{Hy } = L + degreéB(z)) = L +¢q second-order cumulants [20] (in our case, the odd moments

. . dtob
which means thaf{;, ; is full rank for L = Lo — L; +1 > are assumed to be zero) as

[¢K/K —1]. O By (k= k)yi, (K +n1) i (F +n1)yi, (K +n1)"}
The meaning of this result is that if we choose the appro- = cum[yi, (k) vi, (k +n1 + k1) yis (k +n1 + k1)
priate lengthL, quHLq is invertible, and forany £, there s (b + 1+ k1))

exists

B - o + cum [y, (k), yi, (K + 11 + k)]
= L) " HLE - cunys, (£), i, ()]

such that{ = H ,w, which is equivalent to say that the +cum |y, (k), yi, (k +ny + k1))

solution of (8) exists as (

'Cum[ylz( ) y Yis k)] (13)
—opt __ T —1 T
W= (L Hea) ™ g Using cumly, (k)*, i, ()] = 2 T4 by, (n)*hiy () into
In the time domain, the filter can be expressed as (13), then substituting (13) into (14) and using
K Lo
Z Z w;(m)y;(n —m) 9) Z Z wy, (k1)ciy iy (1 + k1)
i=1 m=L1 i1=1 ki1=ILy
a7 — anopt _ F50Pt AL — rYQh’iz (711)*, ny € [07 q]
and forw = w°?*, £ = Hy ;w°"* ~ 6, hence B {0, otherwise (14)

K Lo
W (m N 10y Wherec; ;, (n1 + k1) = cum [y;, (k),y:, (k + n1 + k1)*] [see
Z Z m)yi(n —m) = z(n). (10) Appendix B for the derivation of (14)], we obtain

=1 m=L
As L is made larger, the matriéd;, ,(Hf Hp,,)~HF  tends E{x(k)yi;,(k +L”1) Yis(k )y (b + 1)}
to the identity matrix and (10) tends to equality. i: 22: wi (Ve (k1 + 1)
= il 1 Zl,iz,ig,h; 1 1
B. Derivation a=t klqu
We assume, for the derivation, that there is no noise in the + 3 Z hiy (n)*hi,( ] hi,(n1)
model. Using statistical independence of the source symbols n=0
{z(n)} (STATIND) and the linearity property of cumulants ) q
(LIN), we can write for the following fourth-order cross +95 [ D iy (R)hiy(n)* | hiy(ny)* (15)
moments: n=0
B0 (-4 )"0 (-4 )i 1)) fm € [0.4] and
. E{x(k)yi, (k +n1) Yiy (k + 1)y, (k +11)"}
= Z Z Z h’ll Z2 )h’lz (TL?) (¢ Lo
m=0 n=0 72=0 = wiy (k)€ iy g0, (R +01) - (16)
x E{z(k)x(k +n1 — m)*z(k +ny —n) lezzl klzz:L B
z(k+n1 —n2)"} in any other case with
= Yahi, (nl)*hiz (n1)his (n1)" Yo ()
+ ’72 Z hn iz )] hiz (711)* =cum [yil (k)v Yiy (k + m)*v Yis (k + m)
m=0 Yis (k +m)*]

+ 72 (m) = cum{y;, (k), yi, (b +m)*].

n=0

> hi(m)hi, <n>*] hio(n)* (1) y

1,92
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Equating (15)—(16) and (11), we obtain

381

where the matrixC is defined as

K Ly T T T T T T
, Cc=[C C .. . C o OF
Z Z wiy (k1) 4, 4y, (F1 4 72) Gy Gl LR TR R
i1=1 ki=L; and
_ Jvahiy (1) his (n)his(n)®, i0<ny <gq T wid il .
- {0, otherwise. C=I[5" 8§y - 8%l
17 with the equation, given at the bottom of the page, and
Expression (17) is important because it relates linearly the il girl il
weights w; (k) to the fourth-order cross cumulants of the Y R
samples of the signal (filtered and downconverted) at thegi.l _ SnLi—q+1  SnLitl—g+l "7 SnLo—q+1
output of the antenna elements. However, we cannot use (17) " : : : :
directly because the term&;,(ni)*hi,(n1)hi,(n1)* in the Sszth S:i,lL1+1,2q Ssz272q

linear equations require knowledge of the baseband discrete-

time channels not available in practical systems. To eliminat&e vectord is defined as

the terms containing the unknown channels, we can consider q_ [
derivation similar to the Giannakis—Mendel (GM) method [5]. ~

T T T T T T
di, dip o dig dyy o0 o dig

The original GM method was designed for the real-time-seriggip,
case, so we have to make some modifications to apply the idea
to the complex multichannel case. Following the derivation of  d;; = [—31707_(1 =S10,—q+1 T —S102¢

Appendix C, we finally obtain
¢ K L
DD > wi (k) (mA+ k) (n—m)
m=0 i1=1 ki=L;
g K L
= Z Z Z wy, (k1)ef (k1 +m)c(n —m)
m=0 i1=1 k1=L1
712—(],"',2(], ivl:1727"'7K' (18)

This is an overdetermined system of equations wWith —
L; + 1)K unknowns and3¢ + 1)K? equations. Assuming

w1(0) = 1, we can collect these equations in a system, line

in the coefficientsw; (k1) (i1 # 1,k # 0). We define the
following statistics:
q

y , ,
Sikin = Z (¢}, (B +m)c] g y(n —m)

m=0
—ci(n=m)c] (ks +m)]
n=—q,—q+1,--+,2q,4,1,0; =1,2,--- | K
ki =Ly, Lo.
Compacting the unknown weights in vector notation
w=[w" wl, . wk]’
w; = [wi (L), w;(Ly 4+ 1), w;(L)]F
w = [wy (L), w (L1 + 1), wi(=1), w1 (1), wy (La)]*
the system of equations can be written

il il il 7.

2

This system can be solved in the least-squares sense
w=Cld=(CHc)"'cHd

because of the assumptions. Particulady,1 assures that the
distortionless receptionondition is satisfied so that the model
(10) is valid, and, as a consequen€®! C is positive definite,

[3], [5]- When the samples are well separated in time and if
the cumulants are absolutely summable, then the theoretical
cumulants are consistently estimated from a data record of
N samples, and ensemble averages can be approximated by
8fnpirical averages.

IV. ADAPTIVE IMPLEMENTATION USING
AN RLS SQUARE-ROOT APPROACH

We can consider a recursive implementation if we adopt
the cumulant estimation procedure reported in Appendix A.
Defining asC(n),w(n),d(n) the estimation ofC,w,d, re-
spectively, at time instant, we can devise the following
adaptive algorithm. We denote théh row of a matrix M
as[M];. Similarly, for vectors we denote thgh element of
a vectorv as [v];. The matrixC(n) and the vectok(n) are
defined by the following time updates:

<[C(t[n)\f (17]1))]z‘[n+11 )

- B Ad(n)
d(n+1) = <[d(t[n + ki) )

Cin+1)=

Cw=d (19)
il : i, i, : i,
SLLi,—¢  *  Si-1,-q¢ Stl,—¢  + SlLo,—q
il i, gl i, gl
S = |SLLi,—g+1 + S1,-1,—¢+1 S11,—¢+1 * SLLo,—g+1
i, : il il : il
S1,L1,2¢ ¢ S1,-12 S11,2¢ ¢ S1,L..2¢
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TABLE |
ComPUTATIONAL COMPLEXITY FOR J{ ELEMENTS, L TAPS, AND CHANNEL IMPULSE RESPONSES
TRUNCATED TO ¢ + 1 FOR THE HOS ALGORITHM AND THE QR-RLS

Method || HOS ] QR-RLS
N of real multiplies || 8K°L(3¢ + 1)(g + 1) + 36K (3¢ + 1) + 10(K L) + 30KL | 10(KL)? + 30K L
N. of reciprocals 2K L 2KL
N. of Square Roots KL KL
where t[n] = |n — 1/K?(3¢+ 1) + 1, iln] = (n - TABLE I
1)In0d[K2 (3(] + 1)] +1, and )\ is the forgetting factor. At ExamPLE OF COMPUTATIONAL COMPLEXITY FOR X' = 4 AND
h 1 st we wish to solve the problem L = 9 TAPs AND CHANNEL IMPULSE RESPONSESTRUNCATED
eachn + 1 stage, we p T0 Q@+ 1 =5 FOR THE HOS ALGORITHM AND THE QR-RLS
] AC(n) Method | HOS [ QR-RLS
min w —
w [C’(t[n + 1])]1‘[71_1_11 N. of real multiplies (log1oN) || 5.5066 | 4.1474
N 9 N. of reciprocals (logi1gN) 1.6812 | 1.6812
3 < Ad(n) ) (20) N of Square Roots (logioN) || 1.3802 | 1.3802
[d(t[n + 1D)ipet1)
Suppose that a matrik (n) is known, such thaQ” C(n) = available with these characteristics. As expected, the square-

root (QR)-based filter exhibited excellent numerical behavior
and robustness to roundoff errors. We also reduced the num-
ber of bits to 16 to use fixed-point arithmetic processors

(V((J")) with @ orthogonal andV(n) upper triangular, then
the problem stated in (20) is equivalent to

. AC(n) with different costs without observing important problems
min ||QF ) -
w [C(tn + 1)]ifn+1] of convergence. The computational complexity in terms of
2 multiplications per iteration was calculated and compared

to the complexity of the adaptive QR-RLS (recursive least
squares based on QR decomposition) approach summarized

< n+1]][n+1>

— min < AV(n) )w in Appendix D. To make a fair comparison, we used the
w [C{tn + 1Ditn+1) same square-root approach in the implementation of the RLS
2 algorithm. So, while in the HOS case square-root decomposi-

(21) tions are performed on a cumulant matrix, in the case of the

_ < Ad(n) )
[d(t[n + 1])]int1] hatr
MMSE, the square-root decomposition is performed on the

because the Euclidean distance is preserved by orthogofigda samples properly organized into a matrix (see Appendix
transformations. The proof of (21) can be derived forming). The approximate number of computations per iteration
the normal equationdor the two minimization problems and ysing filters length equal té is given in Table I. The Givens
comparing them. The advantage is that the solution minimizgjtations can be optimized and modified into “fast” Givens
of (21) is simply the solution of a triangular system. Weotations to eliminate the square roots. However, we observe
update for the change in the parameter (see [#@jn) = that “fast” Givens rotations, if computationally more efficient,
w(n+1)—w(n). To find the orthogonal matrig), an efficient are known to introduce some numerical instability. On the
procedure can be adopted similar to the technique proposgfer hand, square roots can be easily implemented in a DSP
in [17]: a set of Givens rotations to annihilate the 'nfeflobrocessor by lookup tables.
triangular part of the matrix [C(t[AC(]T)? ). The algorithm _From Tables | and 11, it |_s e_v_ident thgt the HOS algo-

i rithm here proposed has a significantly higher computational
complexity than the traditional QR-RLS scheme. This is the
price to be paid for the improved performance in terms of

consists of the following steps.
1) Compute the predlct|0n erroi(n + 1) = [d{t[n +

I))ign41) = [C(tn + DI, 4 1w(n)- identification capability andlindnessof the approach. It is
2) Form the matrix . . . .
extremely important to emphasize that if throughput rate is
AV(n) o of concern, one may use efficient very large-scale integration
[C(t[n + 1Dipn4y  uln +1) (VLSI) architectures because an increase in complexity does

not necessarily result directly in lower computational speed.
3) Sweep the bottom part of this matrix using Givens

rotations. V. SIMULATIONS
4) Solve the triangular syste®W(n + )dw(n + 1) =

= To show how the method can be used in a digital mobile
d(n +1).

radio, system we analyze the performance of an ideal TDMA
. system (similar to the 1S-54 standard) for cellular communi-
A. Remarks on the Implementation cations. The mobile to base communication is allocated in the
The simulations in the following section are performe824-849-MHz band. The 30-KHz channel of the transmitter
using a word length size of 24 bits using fixed-point arithemploys QPSK at a data rate of 13 Kbps. A block diagram of
metic. Digital signal processing processors are commerciathye receiver is shown in Fig. 1. Antenna spacing\j2. The
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Fig. 1. Block diagram of the receiver.

tuner module performs a standard single conversion schemach channel is specified uniquely by the delay inte®al
The analog-to-digital (A/D) converter is a high-speed bandpasbich we normalize with respect to the symbol peribd
sampler, while the conversion at baseband is operated byrhe angles of arrival of the three rays #he= —10°,6, =
digital downconverters (channelizers). This architecture is cagi®, and 63 = 15°. The normalized (to symbol period)
effective and very flexible, but the performance of the receivdelay interval of the first path is 0.15, while the second
critically depends on the A/D converters. Pulse-shaping filteand third paths are specified in each test case. The number
are square-root-raised cosine filters at the transmitter andofitelements of the antenna is four. Tap spacing is equal
the receiver, so that,(t) is a perfect raised cosine functionto one symbol period. The support of each (FIR) channel
with excess bandwidth equal to 0.35. In Fig. 2, we show tl{the impulse response of each path) is truncated to five, that
equivalent baseband discrete-time model, where the tappgdthe impulse responses of the symbol-sampled channels
delay lines are the time-filtering stages. We assume thrggan approximately five symbol periods. This means that
independent rays are received at the antefia= 3), and it is assumed thay = 4 in the algorithm. The Doppler
each ray is characterized Wy = 22, P» = 20, and 5 = 18 frequency usually describes the SOS’s of channel variations.
paths. The powers of the delayed paths, thatFi§|p; ..|°} Doppler frequency is related through wavelengtto vehicle
and the delaysr; ,, for m = 1,2,.--F; and4 = 1,2,3, motion. The model used is based on the wide-sense stationary
are distributed according to the power delay profile, which isncorrelated scattering (WSSUS) assumption. The complex
constituted by two clusters with one-sided exponential delayeights p; ,, are generated as filtered Gaussian processes
_r fully specified by the scattering function. Particularly, each
O,(7) = {6 (D O<7sDi process has a frequency response equal to the square root
0.5¢(Pi=7) D; <7<2D;. ; .

’ v = ¢ of the Doppler power density spectrum. We approximate the
wherer and D; are expressed in microseconds. The values Boppler spectrum by rational filtered processes. The filters
the actual delays fof = 1, 2, and3 are obtained by uniform are described by their 3-dB bandwidth, which is called the
sampling of®;(7), that is,; ,, = m(2D;/P;, then the power normalized Doppler frequency. The additional assumption
of the rays are2{|p; m|*} = ®:(7;.m). It is then evident that is that all channels and complex weights have the same
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Fig. 2. Discrete-time model of the filtering sectigd’ sensors andV paths).

Doppler spectrum. To show how the use of the traditional , . ‘ . ; .
MMSE (SOS-based) approach can be inadequate because of 11 i
the MP requirement, we studied the variations of the equivalent 45| ¢
discrete-time model as related to a common propagation '
condition. Fig. 3 shows the real-time position of the zeroes
of one of the four equivalent discrete-time channel models.
(there are four zeroes becauge= 4) for a channel model & -1}
reflecting the moving speed of the mobile of 27 mi/h and a §_1_5,
delay interval of 0.5. The dashed circle is the unit circle in the @
complex plane. Itis possible to see that most of the realizationsE
of the channel present a strong NMP condition. The QR-RLS -2:5f
MMSE filter does not perform optimally in these situations, as -3}
also shown in the following results, and this can motivate the 5 5|
use of high-order statistics. The channels for Figs. 4 and 5 are
static in each run, but they have different realization from run L. s s - : o]
to run according to the statistical distribution of the multipath 2 - 0 Real 1art 2 3 4
parameters (the amplituddg; .| are Rayleigh distributed, P

while the phasemrg(pijm) are umformly distributed). The Fig. 3. Trajectory of the zeroes in the complex plane of the equivalent
mean-squared error (MSE) is defined as the average of Higrete-time model for the Rayleigh fading channel. These plots are rep-

squared errors obtained ov&f = 100 Monte Carlo runs and resentative of a fading event spanning 300 symbols. The speed of the mobile
T = transmitter is 27 mi/h, and the delay intenl; of the channel is 0.5. The

is given er MSE”) = (1/M) E<Jx\=1 Ca (”)’ wherez, (”) —  NMP characteristic of the channel during most of the channel realizations is
(1/Nav) Zi25 lea(n = 1) 12, eq (n) = 2o (n) — 2(n — ng),no  evident.

0.5}
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Fig. 4. Convergence process for SNR10 dB on the second and third paths and different SNR’s on the first path. Delay intervals are 0.15, 0.25, and 0.35.

is the delay introduced by the filters, angl(n) is the output MSE is due to the improved identification capability of higher

z(n) of the combined filters obtained at theth run. N,y than SOS’s, and the slow convergence makes evident the well-

introduces a short-term average of the MSE. In the simulatiGnown requirement for larger sample size to estimate the HOS.

results N, = 10. Fig. 7 shows the impulse response frequency response of
Fig. 4 shows the results of the simulations in terms of thbe discrete-time model before and after convergence of the

MSE when usingL = 30,L; = —15,Ly = 15 (the delay weights in the same situation of Fig. 5 and SNR 30

intervals D, /Tand D5 /T for the second and third paths aredB. We tested the tracking performance of the QR method

0.25 and 0.35), and = 1. Signal-to-noise ratio (SNR) for by using a time-varying multipath channel. The simulations

each discrete-time channel impulse response is definedsasw performance of the algorithm for mobiles transmitting

in [1]. The performance of the convergence process of tlse that the maximum Doppler frequency (defined fas =

estimation algorithm is shown at different SNR’s. In Fig. 5V/A, whereV is vehicle speed and is carrier wavelength)

for the same delay intervals and= 1 and SNR’s environment multiplied by the symbol period” is fp1" = 0.0006. Delay

of the previous test case we increase the length of the filtémgervals areD; /T = 0.15, D2/T = 0.35, andD3/T = 0.75,

from 25 to 40. It is evident that the computational complexityespectively. The selected parameters are representative of

increase does not justify the marginal improvement. mobiles moving at 27-60 mi/h (depending on the bit rate).
To evaluate the benefits obtained using high-order statistlesFig. 8, channel tracking performance of the QR approach

as opposed to the traditional MMSE approach, we compared a typical fade foRRe{w,(0)} and SNR= 30 dB is shown.

the performance of the QR-RLS method described in Appehhe forgetting factor is\ = 0.97.

dix D and the HOS algorithm. We usdd = 16, L; = —6, The bit-error rate analysis results are shown in Fig. 9 for

and L, = 9 and delay intervald), /T = 0.15, Dy/T = 0.25, delay intervalsD;/T = 0.15, D,/T = 0.2, and D3/T =

and D3/T = 0.5 and D;/T = 0.15, D,/T = 0.5, and 0.25. The channel is time varying witlfp7 = 0.0006, but

Ds/T = 0.75, respectively, for the first, second, and thirdluring the first 500 symbols, bit errors are not measured to

paths, respectively, in Fig. 6(a) and (b). The SNR is 10 dBJlow convergence of the weights. Channel variations are then

and A = 1. The results of this experiment are reported itracked by the adaptive filter with a value &f= 0.98. The

Fig. 6. The HOS algorithm can reach lower values of th8NR is the same on each discrete-time channel. A sample

MSE, but a definitely slower rate of convergence. The lowsize of 16*% was used to estimate an error probability
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Fig. 5. Convergence process (same conditions as Fig. 4) for different SNR’s on the first path—changing the length of the deconvolution baseband filters

of 107*, The results of the QR-RLS filter described in The price for the performance improvement is the increased
Appendix D are also shown as dashed curves. Consideratdenputational complexity, which may result very high for
improvement is achieved as a consequence of the use of HO!&annels with a large delay spread and large number of
As already pointed out, the HOS method is more efficiesensors. An alternative solution to this problem would be to
in the identification of NMP models, but degradations aneduce the size of the linear system and just discarding part of
expected in the presence of fast fading. There is an evidém available equations. The adaptive algorithm is implemented
tradeoff between performance and complexity. We obserlsg means of square-root decomposition of the cumulant matrix
that increasing the order of the space-processing architectangl has the ability to track time-varying channels. The results
(that is, to increase the number of elements in the array)agsome simulations for a TDMA multipath channel are shown
considerably more expensive than increasing the order of fhea single-transmitter environment.

time-processing architecture (that is, to increase the length of

the branch filters). Time processing, in fact, involves only the

DSP back end. APPENDIX

VI, CONCLUSIONS A. Cumulants Estimation

L daptive estimation of cumulants can be implemented by
A hod h Il . :
new method has been presented to process dlgltaﬂgans of the method also used in [15]. We define

modulated signals with an antenna array receiver in a mob
radio environment using high-order statistics. It is based

on some of the ideas presented in [3] for the scalar real m{ ;, ;.. (k) =E{yi (n),v;,(n+ k), vi,(n + k)
deconvolution problem. Among the advantages with respect yi(n+k)}

to the minimum mean-square estimator, we can cite the Y B ) « 1

enhanced identification capability (no particular assumptions mi:l( ) =E{yi(n)yi (n + k)

are required for the channels, particularly the MP property).

Certainly, tracking speed is decreased when using high-orded the estimates of the respective moments based on sample
statistics because of the larger sample size required to obtstatistics asn?, , , (k)™,m? (k)™ usingn samples. As-
consistent cumulant estimates. suming we have available at iteratiomQ(0), - - -, y;(11a4) foOr
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Fig. 6. MSE performance for the HOS (blind) algorithm and the QR-RLS (perfectly trained) filter. The delay interval for the three channels are (a)
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i=1,2,---, K, at iterationn, we can updaten!, , , (k) write
from ¢, , . (k)" as follows: md (k) =& (k)™
= (1= a(n)) mf (k)"
1,1, (0 T ()T (OO0 1), (22)
_ ~ n—1
=1 =a(n) My, 4,1, (R)( =Y Evidently, we can obtain the cumulants estimation at poias
+a(n)y @)yl (O + By, COP + k) gy
X i, (DO 1+ k) ="My 4, lz(k)(n)

— iy ()M (0)™.

1,62

wherea(n) = (1/n) + Iy and %) = min(n + Ijpy, 7 +
Iiag — k). Similarly, for the second-order moments, we can
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Fig. 7. Frequency response of the discrete-time system (channels-combining scheme) with no filter and after convergence (700 symbols) of the complex
weights of the baseband filter (solid). Also, the response after 500 samples (dotted) is provided. The channel is in the same condition as Fig. 4.

Finally, gt (n), the estimate ofsjili1 , based onn This expression is evidently different from zero only for

Sy ir kg
samples, can be obtained as 0 < n; < ¢. Considering that
. E{w(k)yi(k+n1)")
it (1) = D0 (e i+ m) e (kg — ) = BBk +m)}
m=0 K Lo
o n) o . n = kO E{y(k — kDy; (k * 25
— & (ke = m)ME (i +m) )] ; k; wi(k)E{yi(k — k)i (k +n1)"} (25)
ko = —g. —q 4+ 1.++-.2 e
2‘ q, (J+ ) y 44 that iS,
171711:1727"'7-[( K L
iv=1Ly, Lo @) Bla(kyk+n0)* =3 3wkl (b +np)
=1 ki1=Lq

and an obvious organization of these quantities into the matind equating (25) and (24), we obtain (14).
ces of the system (19) gives the estimaiés) andC(n).
C. Proof of (18)

B. Proof of (14) Let us consider the transform of these two sequences
From the cumulant properties, we can write for the follow- ¢ (m) = cam [y;(k), y7 (k +m)]
ing second-order cross moments: q
=72 > hi(k)hu(k +m)*
Ea(k)yi(k +n.)"} k=0
q and
= > halm)"Ea(k)alk +ny = m)"} | d :
m=0 Ci{l’l’l(m) = Y4 Z hz(lf)hl(k' + m)hl(k} + m)*
= y2hi(n1)". (24) k=0
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Fig. 8. Tracking performances of the QR approach with equal SNR'’s on all discrete channels (30 dB). The channel is varying, and the product maximum
Doppler frequency-symbol period is equal to 0.0006. Delay intervals are 0.15, 0.35, and 0.75. The forgetting factor is equal to 0.97. The sslitheurve i
trace of the real part of the weight2(0) using the adaptive algorithm, and the dashed curve is the optimum performance.

(the = transform of a sequendgn) is indicated asZ[b(n)]) with Si(m) = hi(m)h(m)* . Substituting (14) for
explicitly yohi(m)*m = 0,1,---,q and (17) for~45;(m), we obtain
the set of equations (18).

Ciatalz) =7 zm: Z (Rl (k = ) (k )™ 2 D. The QR-RLS Adaptive Algorithm

<Z ) The problem we have to solve at every step is in the case
h;(1n

of perfect knowledge of the transmitted sequenrc¢e)
2

- . Ve o ax™
. <Z hl(l/g)hl(l/g)*zz_”2> w' < (n+ 1)t ) v <$(”+ 1)) (8)
v2 with
=l (z Y HP (2) (26) TN = G, 9(2), -, 5(n)
and y(k) = (y1(k), yo(K), - - 7yls’(k))T
k kE—L),y(k— L, ooyt
Crulz) = naHi=) H (2 s :Eil((l)’$(2)?,?f(7x(n))T_+ V)

where H;(z) = Z[hi(n)] and H®(2) = Z[h(n)h(n)*]. ()T )
Eliminating H;( 1), we can express the-domain relation- Thf normal equationsare now ¥ w =
yorvT xan), Following the same discussion for the

ship

3 HOS case of Section V, with the difference ~t(h:;\t now the

V2012 Hi (2) = 1uCit()H ™ (2) QR decomposition is operated V™ — ((VO )) and

_ _ _ in <0 _
so that in the time domain Q" v o= ((X5 )), we can express the algorithm as
follows.
Yo Z hi(m)ciy(n —m) 1) Compute the prediction errai{n + 1) = z(n+ 1) —
m=0 @(71 =+ 1)T1U(7’L)

Z fim ) - 19 K 2) Form the matrix

=7 z n-= ’ L= 1,401, ~ (n

! m=0 l l < )\V( : o )
27) yn+ DT a(n+1)
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Fig. 9. Bit-error rate performance on a time-varying channel (the product maximum Doppler frequency-symbol period is equal to 0.0006) for different
numbers of elements and weights. Delay intervals are 0.15, 0.25, and 0.35. The forgetting factor is 0.98. Solid curves are the performance aistb@ HOS-b
method, and dashed curves are the performance of the perfectly trained QR-RLS method.

3) Sweep the bottom part of this matrix using Giveng[s]
rotations.

4) Solve the triangular systeﬁi("+l)dw(n+1) =

5) Obtainw(n + 1) = w(n) + dw(n + 1).

(1)
X . [6]

(7]
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