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Cumulant-Based Adaptive Multichannel Filtering
for Wireless Communication Systems with

Multipath RF Propagation Using Antenna Arrays
Massimiliano (Max) Martone,Member, IEEE

Abstract—A method based on high-order statistics is proposed
to mitigate the performance degradation caused by multipath RF
propagation in a mobile radio communication system using a
linear antenna array at the base-station receiver. It is shown
that an overdetermined system of linear equations (involving
only cumulants of the received baseband digitized signal) can
be obtained to perform noniterative deconvolution. An efficient
adaptive algorithm based on square-root decomposition is pro-
posed to avoid numerical problems when real-time tracking of
moving transmitters is needed.

I. INTRODUCTION

T HE USE of antenna arrays in wireless communications
can theoretically improve system performance in terms

of signal quality and capacity. Particularly, a multielement
antenna at the base-station receiver of a cellular system is able
to compensate signal degradations in the mobile to base link
[12], [13]. It is important to observe, however, that a practical
and definitive solution for digital cellular systems employing
time-division multiple access (TDMA) does not exist at this
time.

In TDMA systems, data dispersion can span several symbols
as a consequence of frequency-selective fading caused by RF
multipath propagation. In addition, propagation characteristics
may change in time due to the motion of the transmitter. The
received signal is composed of the original plus several de-
layed attenuated replicas, and each replica reaches the antenna
with a different attenuation and angle of arrival. Space-only
processing methods are not effective because intersymbol
interference (ISI) cannot be compensated using the traditional
beamforming architecture. A careful combination of space and
time filtering may result in an extremely efficient method to
solve ISI caused by multipath fading. This subject was studied
in great detail in [1] and [11], where it was shown that the
use of joint diversity/equalization methods offers significant
advantages with respect to traditional systems. The structure
we propose and analyze is different from the optimum scheme
since a digital filter is provided for each diversity branch. This
architecture was proposed by antenna arrays designers and
successfully applied on radars more than a decade ago as a
method to increase bandwidth resolution [7]. The implemen-
tation was entirely based on analog circuitry (delay lines and

Manuscript received July 24, 1995; revised November 18, 1996.
The author is with the Watkins-Johnson Company Telecommunications

Group, Gaithersburg, MD 20878-1794 USA.
Publisher Item Identifier S 0018-9545(98)02478-5.

weights control): this made the idea not very attractive in terms
of cost and reliability. Recent progress in digital technology
provides solutions to difficult implementation problems caused
by high-complexity algorithms for adaptive antennas.

The space-time filtering approach used in this paper re-
sults in a discrete-time single-input–multiple-outputs (SIMO’s)
model that must be deconvolved (equalized). Standard tech-
niques for equalization are based on an equivalent minimum
phase (MP) system modeling approach because they exploit
only the second-order statistics (SOS’s) of the signal. The
minimum-mean-square-error (MMSE) criterion, for example,
is based on SOS only. However, the most part of all real-
world channels do not present the MP condition. Motivated
by these observations, the equalization of nonminimum phase
(NMP) channels using higher than second-order statistics
(HOS) has stimulated incredible interest during the last ten
years. Moreover, HOS-based identification/equalization meth-
ods based on high-order cumulants are theoretically insensitive
to Gaussian noise. Many algorithms were studied for the
identification/deconvolution of finite-impulse response (FIR)
models based on third- or fourth-order cumulants. Nonlinear
methods are characterized by equations, where output cumu-
lants and parameters of interests are nonlinearly related. Linear
methods use particular cumulant slices, so that the relation
becomes linear. It is well known that nonlinear methods
can obtain optimum performance (minimum variance), but
since the solution of the nonlinear system involves always
an iterative search, one is always trapped with local min-
ima of the squared error. Linear methods can obtain good
performance when overdetermined systems of equations are
used. Most of the works describing HOS-based algorithms,
however, were never applied to realistic environments so that
eventual advantages of these ideas in the solution of practical
problems are not clear. It is well known, just to name the
main objection to the use of HOS, that high-order cumulants
estimates require considerably more samples than traditional
correlation estimates, and, in addition, cumulants estimates are
affected by a larger variance of the estimation error. There is
an effort in our work in trying to apply an HOS algorithm
to a more realistic scenario and to understand the feasibility
of practical implementations. The only blind algorithm well
studied in its practical implementation [14] is the constant
modulus algorithm (CMA) whose demonstrated misconver-
gence under particular situations constitutes the most important
objection.
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The method proposed in this work is based on the same
idea introduced in [16], subsequently developed in several
algorithms for scalar deconvolution. It is our contribution in
this work to generalize some of the mathematical expressions
derived in [3] and [20] as they apply to the multichannel,
complex case. The resulting algorithm is blind in the sense that
it does not require any training sequence or signal to achieve
signal detection. Moreover, no angle of arrival needs to be
estimated, which makes the method very attractive because the
array is not sensitive to calibration errors. The performance of
the method is investigated using a square-root approach for the
adaptive implementation in the case of a TDMA system with
frequency-selective Rayleigh fading. It is important to point
out that we focus in this work on the space-time processing
of signals severely distorted by multipath frequency-selective
fading, and we do not analyze the effect of adjacent channel
interference. The multiple-sources scenario can be treated
similarly generalizing the main idea introduced here.

The paper is organized as follows. In Section II, we describe
the system model for the propagation channel and the discrete-
time model. In Section III, the set of equations necessary to
solve the deconvolution problem is derived. In Section IV, the
adaptive implementation is described, while in Section V the
results of the simulations are shown.

II. SYSTEM MODEL

We assume a mobile transmitter communicating with a base
station with a -element antenna. Each element of the antenna
has a digital filter with complex weights. The
transfer function of the antenna, whose structure is assumed
to be linear with evenly spaced elements, is expressed as

(1)

where , is the distance between adjacent
antenna elements, is the wavelength of the signal, is the
arrival angle of the signal (DOA), is the delay between

and for and
, and is the antenna pattern as a function

of and the frequency response as a function ofMultipath
propagation can be characterized as an-path channel whose
th path is represented by a received,

delayed, and attenuated replica of the signal. The impulse
response of theth path can be expressed as

where and are the delay, amplitude, and
phase of the th delayed signal in theth path, while
is the delta function. Observe that we are assuming now
for the derivation a time-invariant channel while instead we
should assume that and are time-
varying parameters. This condition holds in many applications
of interest since the observation interval is often much shorter
than the coherence time of the channel which characterizes the
time-variant behavior of the propagation media. However, the

adaptive scheme described in Section IV is designed for time-
variant channels. The complex baseband modulated signal is

, where are the
complex symbols defining the signal constellation used for
the particular digital modulation scheme. is a square-
root-raised cosine-shaping filter with rolloff factor 0.35, and

is the signaling interval. The received signal through theth
path can be represented as

(2)

where is the carrier frequency. The contribution of
the signal propagated through theth path with angle of arrival

and phase difference from the first antenna
element to theth element can be written (we are neglecting
the additive noise term) as

where Sampling at symbol rate ,
we can compact the effect of the RF propagation channels at
the input of the digital filters at baseband as

(3)

where is Gaussian noise and is the
-sampled impulse response

In this expression, is the raised cosine function with an
excess bandwidth of 0.35 [2] obtained because we assume that
the receiver filters at each antenna are square-root-raised
cosine filters perfectly matched to the transmitter filters
In the domain, the transfer function (3) can be expressed as

(4)

where the organization of the polynomials ( transforms
of ) in is given by

If we stack the outputs of the sensors according to the
organization of , whose -
transform vector polynomial is , and we neglect the
additive noise term, we can write

where is the transform of This is a one-input
-output multichannel moving average model (or SIMO).
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A. Distortionless Reception

To recover the input signals, a linear-input one-output
filter as in (1) with tap spacing and defined as

is applied to the downconverted
and filtered outputs of the sensors. The main objective for

is to achievedistortionless reception. If we define

distortionless receptionmeans that

(5)

The system is required to be bounded-input–bounded-
output (BIBO) stable. The solution (5) is achievable only
ideally. Since the input signal constellations are symmetric,
the statistics of the input signal reflect the same sym-
metry. Moreover,signal reconstruction is possible only up to
a constant delay, due to the stationarity of the input process.
The recovered signals will be subject to a phase ambiguity and
a delay. The best possible result for practicaldistortionless
receptionby a means of a linear filter is

(6)

where

integer

We say that satisfies thedistortionless receptioncon-
dition if for there exists a BIBO stabledistortionless
receptionfilter

III. D ESCRIPTION OF THEMETHOD

We shortly recall that the high-order statistical properties
of a process are commonly described in the time domain by
cumulants [6]. Cumulants of interest here are fourth-order
cumulants of complex zero-mean stationary processes
defined as

cum

Second-order cumulants are defined as

cum

The properties of cumulants that we exploit are:

1) LIN

cum cum

2) STATINDif the samples of a process can be divided into
two (or more) statistically independent subsets and then
their joint cumulants are zero.

It is also well known that if the process samples are jointly
Gaussian, then their jointth-order cumulant is zero for

A. Key Assumptions

The important assumptions necessary to derive the algo-
rithm are as follows.

1) AS1: the transformation in (3) represents a stable sys-
tem, but possibly NMP, satisfying:

a) all channels , which have finite
support ;

b) for some ;
c) for some ;
d) for ,

which have no common zeroes.

2) AS2: the complex sequence is constituted by
random variables identically non Gaussian distributed
and statistically independent, and the cumulants of

satisfy:

a) cum
b) cum
c) cum cum

Assumption AS1 is necessary because it assures thedistor-
tionless receptioncondition for The relation between

and can also be expressed as

(7)

where

is the impulse response of the cascaded system

and 1 is the generalized Sylvester
matrix

...
...

...
...

...
...

...

The rank of plays a crucial role in the existence
of a stable BIBOdistortionless receptionfilter The
relationship between the rank of the generalized Sylvester
matrix and thereducibility of has been studied in
multivariable control literature [9], [10]. An polynomial
matrix (with ) is said to beirreducible if there
is no matrix with a nonconstant determinant such
that , where is also It is
proved in [9] that is irreducible if and only if it is full
rank for any (which is expressed in our case by AS1).

The desired solution that completely restores the informa-
tion signal up to the delay is The generic th element
of the vector is , if we neglect the phase shift and
the delay Formally, we have to solve the minimization
problem

(8)
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This is a linear least-squares estimation problem, whose solu-
tion requires to be full rank. First, we observe that by
AS1, is irreducible. Second, we specify the following
lemma.

Lemma 1: If AS1 is valid, is full rank for any

Proof: Let us assume that is constituted by
elements and that is an element of

different from zero (which exists due to AS1). Let
for and

The degree of is By Corollary 1 of [10], is
irreducible if and only if and

rank degree

which means that is full rank for

The meaning of this result is that if we choose the appro-
priate length , is invertible, and forany , there
exists

such that , which is equivalent to say that the
solution of (8) exists as

In the time domain, the filter can be expressed as

(9)

and for , hence

(10)

As is made larger, the matrix tends
to the identity matrix and (10) tends to equality.

B. Derivation

We assume, for the derivation, that there is no noise in the
model. Using statistical independence of the source symbols

(STATIND) and the linearity property of cumulants
(LIN), we can write for the following fourth-order cross
moments:

(11)

This expression is evidently different from zero only for
According to the assumed model and since we are

looking for the noncausal filter that verifies (10), we can write

(12)

The fourth-order moments are related to the fourth- and
second-order cumulants [20] (in our case, the odd moments
are assumed to be zero) as

cum

cum

cum

cum

cum (13)

Using cum into
(13), then substituting (13) into (14) and using

otherwise
(14)

where cum [see
Appendix B for the derivation of (14)], we obtain

(15)

if and

(16)

in any other case with

cum

cum
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Equating (15)–(16) and (11), we obtain

otherwise.
(17)

Expression (17) is important because it relates linearly the
weights to the fourth-order cross cumulants of the
samples of the signal (filtered and downconverted) at the
output of the antenna elements. However, we cannot use (17)
directly because the terms in the
linear equations require knowledge of the baseband discrete-
time channels not available in practical systems. To eliminate
the terms containing the unknown channels, we can consider a
derivation similar to the Giannakis–Mendel (GM) method [5].
The original GM method was designed for the real-time-series
case, so we have to make some modifications to apply the idea
to the complex multichannel case. Following the derivation of
Appendix C, we finally obtain

(18)

This is an overdetermined system of equations with
unknowns and equations. Assuming

, we can collect these equations in a system, linear
in the coefficients We define the
following statistics:

Compacting the unknown weights in vector notation

the system of equations can be written

(19)

where the matrix is defined as

and

with the equation, given at the bottom of the page, and

...
...

...
...

The vector is defined as

with

This system can be solved in the least-squares sense

because of the assumptions. Particularly, assures that the
distortionless receptioncondition is satisfied so that the model
(10) is valid, and, as a consequence, is positive definite,
[3], [5]. When the samples are well separated in time and if
the cumulants are absolutely summable, then the theoretical
cumulants are consistently estimated from a data record of

samples, and ensemble averages can be approximated by
empirical averages.

IV. A DAPTIVE IMPLEMENTATION USING

AN RLS SQUARE-ROOT APPROACH

We can consider a recursive implementation if we adopt
the cumulant estimation procedure reported in Appendix A.
Defining as the estimation of re-
spectively, at time instant , we can devise the following
adaptive algorithm. We denote theth row of a matrix
as Similarly, for vectors we denote theth element of
a vector as The matrix and the vector are
defined by the following time updates:

...
...

...
...

...
...

...
...

...
...

...
...



382 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 47, NO. 2, MAY 1998

TABLE I
COMPUTATIONAL COMPLEXITY FOR K ELEMENTS, L TAPS, AND CHANNEL IMPULSE RESPONSES

TRUNCATED TO q + 1 FOR THE HOS ALGORITHM AND THE QR-RLS

where
and is the forgetting factor. At

each stage, we wish to solve the problem

(20)

Suppose that a matrix is known, such that

with orthogonal and upper triangular, then
the problem stated in (20) is equivalent to

(21)

because the Euclidean distance is preserved by orthogonal
transformations. The proof of (21) can be derived forming
the normal equationsfor the two minimization problems and
comparing them. The advantage is that the solution minimizer
of (21) is simply the solution of a triangular system. We
update for the change in the parameter (see [17])

To find the orthogonal matrix , an efficient
procedure can be adopted similar to the technique proposed
in [17]: a set of Givens rotations to annihilate the inferior

triangular part of the matrix The algorithm

consists of the following steps.

1) Compute the prediction error

2) Form the matrix

3) Sweep the bottom part of this matrix using Givens
rotations.

4) Solve the triangular system

A. Remarks on the Implementation

The simulations in the following section are performed
using a word length size of 24 bits using fixed-point arith-
metic. Digital signal processing processors are commercially

TABLE II
EXAMPLE OF COMPUTATIONAL COMPLEXITY FOR K = 4 AND

L = 9 TAPS AND CHANNEL IMPULSE RESPONSESTRUNCATED

TO Q + 1 = 5 FOR THE HOS ALGORITHM AND THE QR-RLS

available with these characteristics. As expected, the square-
root (QR)-based filter exhibited excellent numerical behavior
and robustness to roundoff errors. We also reduced the num-
ber of bits to 16 to use fixed-point arithmetic processors
with different costs without observing important problems
of convergence. The computational complexity in terms of
multiplications per iteration was calculated and compared
to the complexity of the adaptive QR-RLS (recursive least
squares based on QR decomposition) approach summarized
in Appendix D. To make a fair comparison, we used the
same square-root approach in the implementation of the RLS
algorithm. So, while in the HOS case square-root decomposi-
tions are performed on a cumulant matrix, in the case of the
MMSE, the square-root decomposition is performed on the
data samples properly organized into a matrix (see Appendix
D). The approximate number of computations per iteration
using filters length equal to is given in Table I. The Givens
rotations can be optimized and modified into “fast” Givens
rotations to eliminate the square roots. However, we observe
that “fast” Givens rotations, if computationally more efficient,
are known to introduce some numerical instability. On the
other hand, square roots can be easily implemented in a DSP
processor by lookup tables.

From Tables I and II, it is evident that the HOS algo-
rithm here proposed has a significantly higher computational
complexity than the traditional QR-RLS scheme. This is the
price to be paid for the improved performance in terms of
identification capability andblindnessof the approach. It is
extremely important to emphasize that if throughput rate is
of concern, one may use efficient very large-scale integration
(VLSI) architectures because an increase in complexity does
not necessarily result directly in lower computational speed.

V. SIMULATIONS

To show how the method can be used in a digital mobile
radio, system we analyze the performance of an ideal TDMA
system (similar to the IS-54 standard) for cellular communi-
cations. The mobile to base communication is allocated in the
824–849-MHz band. The 30-KHz channel of the transmitter
employs QPSK at a data rate of 13 Kbps. A block diagram of
the receiver is shown in Fig. 1. Antenna spacing is The
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Fig. 1. Block diagram of the receiver.

tuner module performs a standard single conversion scheme.
The analog-to-digital (A/D) converter is a high-speed bandpass
sampler, while the conversion at baseband is operated by
digital downconverters (channelizers). This architecture is cost
effective and very flexible, but the performance of the receiver
critically depends on the A/D converters. Pulse-shaping filters
are square-root-raised cosine filters at the transmitter and at
the receiver, so that is a perfect raised cosine function
with excess bandwidth equal to 0.35. In Fig. 2, we show the
equivalent baseband discrete-time model, where the tapped
delay lines are the time-filtering stages. We assume three
independent rays are received at the antenna , and
each ray is characterized by and
paths. The powers of the delayed paths, that is,
and the delays for and ,
are distributed according to the power delay profile, which is
constituted by two clusters with one-sided exponential delay

where and are expressed in microseconds. The values of
the actual delays for and are obtained by uniform
sampling of , that is, , then the power
of the rays are It is then evident that

each channel is specified uniquely by the delay interval,
which we normalize with respect to the symbol period

The angles of arrival of the three rays are
and The normalized (to symbol period)

delay interval of the first path is 0.15, while the second
and third paths are specified in each test case. The number
of elements of the antenna is four. Tap spacing is equal
to one symbol period. The support of each (FIR) channel
(the impulse response of each path) is truncated to five, that
is, the impulse responses of the symbol-sampled channels
span approximately five symbol periods. This means that
it is assumed that in the algorithm. The Doppler
frequency usually describes the SOS’s of channel variations.
Doppler frequency is related through wavelengthto vehicle
motion. The model used is based on the wide-sense stationary
uncorrelated scattering (WSSUS) assumption. The complex
weights are generated as filtered Gaussian processes
fully specified by the scattering function. Particularly, each
process has a frequency response equal to the square root
of the Doppler power density spectrum. We approximate the
Doppler spectrum by rational filtered processes. The filters
are described by their 3-dB bandwidth, which is called the
normalized Doppler frequency. The additional assumption
is that all channels and complex weights have the same
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Fig. 2. Discrete-time model of the filtering section(K sensors andN paths).

Doppler spectrum. To show how the use of the traditional
MMSE (SOS-based) approach can be inadequate because of
the MP requirement, we studied the variations of the equivalent
discrete-time model as related to a common propagation
condition. Fig. 3 shows the real-time position of the zeroes
of one of the four equivalent discrete-time channel models
(there are four zeroes because ) for a channel model
reflecting the moving speed of the mobile of 27 mi/h and a
delay interval of 0.5. The dashed circle is the unit circle in the
complex plane. It is possible to see that most of the realizations
of the channel present a strong NMP condition. The QR-RLS
MMSE filter does not perform optimally in these situations, as
also shown in the following results, and this can motivate the
use of high-order statistics. The channels for Figs. 4 and 5 are
static in each run, but they have different realization from run
to run according to the statistical distribution of the multipath
parameters (the amplitudes are Rayleigh distributed,
while the phases are uniformly distributed). The
mean-squared error (MSE) is defined as the average of the
squared errors obtained over Monte Carlo runs and
is given by MSE , where

Fig. 3. Trajectory of the zeroes in the complex plane of the equivalent
discrete-time model for the Rayleigh fading channel. These plots are rep-
resentative of a fading event spanning 300 symbols. The speed of the mobile
transmitter is 27 mi/h, and the delay intervalDi of the channel is 0.5. The
NMP characteristic of the channel during most of the channel realizations is
evident.
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Fig. 4. Convergence process for SNR= 10 dB on the second and third paths and different SNR’s on the first path. Delay intervals are 0.15, 0.25, and 0.35.

is the delay introduced by the filters, and is the output
of the combined filters obtained at theth run.

introduces a short-term average of the MSE. In the simulation
results

Fig. 4 shows the results of the simulations in terms of the
MSE when using (the delay
intervals and for the second and third paths are
0.25 and 0.35), and Signal-to-noise ratio (SNR) for
each discrete-time channel impulse response is defined as
in [1]. The performance of the convergence process of the
estimation algorithm is shown at different SNR’s. In Fig. 5,
for the same delay intervals and and SNR’s environment
of the previous test case we increase the length of the filters
from 25 to 40. It is evident that the computational complexity
increase does not justify the marginal improvement.

To evaluate the benefits obtained using high-order statistics
as opposed to the traditional MMSE approach, we compared
the performance of the QR-RLS method described in Appen-
dix D and the HOS algorithm. We used
and and delay intervals
and and and

, respectively, for the first, second, and third
paths, respectively, in Fig. 6(a) and (b). The SNR is 10 dB,
and The results of this experiment are reported in
Fig. 6. The HOS algorithm can reach lower values of the
MSE, but a definitely slower rate of convergence. The lower

MSE is due to the improved identification capability of higher
than SOS’s, and the slow convergence makes evident the well-
known requirement for larger sample size to estimate the HOS.

Fig. 7 shows the impulse response frequency response of
the discrete-time model before and after convergence of the
weights in the same situation of Fig. 5 and SNR
dB. We tested the tracking performance of the QR method
by using a time-varying multipath channel. The simulations
show performance of the algorithm for mobiles transmitting
so that the maximum Doppler frequency (defined as

, where is vehicle speed and is carrier wavelength)
multiplied by the symbol period is Delay
intervals are and ,
respectively. The selected parameters are representative of
mobiles moving at 27–60 mi/h (depending on the bit rate).
In Fig. 8, channel tracking performance of the QR approach
on a typical fade for and SNR dB is shown.
The forgetting factor is

The bit-error rate analysis results are shown in Fig. 9 for
delay intervals and

The channel is time varying with , but
during the first 500 symbols, bit errors are not measured to
allow convergence of the weights. Channel variations are then
tracked by the adaptive filter with a value of The
SNR is the same on each discrete-time channel. A sample
size of 10 was used to estimate an error probability
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Fig. 5. Convergence process (same conditions as Fig. 4) for different SNR’s on the first path—changing the length of the deconvolution baseband filters.

of 10 The results of the QR-RLS filter described in
Appendix D are also shown as dashed curves. Considerable
improvement is achieved as a consequence of the use of HOS.
As already pointed out, the HOS method is more efficient
in the identification of NMP models, but degradations are
expected in the presence of fast fading. There is an evident
tradeoff between performance and complexity. We observe
that increasing the order of the space-processing architecture
(that is, to increase the number of elements in the array) is
considerably more expensive than increasing the order of the
time-processing architecture (that is, to increase the length of
the branch filters). Time processing, in fact, involves only the
DSP back end.

VI. CONCLUSIONS

A new method has been presented to process digitally
modulated signals with an antenna array receiver in a mobile
radio environment using high-order statistics. It is based
on some of the ideas presented in [3] for the scalar real
deconvolution problem. Among the advantages with respect
to the minimum mean-square estimator, we can cite the
enhanced identification capability (no particular assumptions
are required for the channels, particularly the MP property).
Certainly, tracking speed is decreased when using high-order
statistics because of the larger sample size required to obtain
consistent cumulant estimates.

The price for the performance improvement is the increased
computational complexity, which may result very high for
channels with a large delay spread and large number of
sensors. An alternative solution to this problem would be to
reduce the size of the linear system and just discarding part of
the available equations. The adaptive algorithm is implemented
by means of square-root decomposition of the cumulant matrix
and has the ability to track time-varying channels. The results
of some simulations for a TDMA multipath channel are shown
in a single-transmitter environment.

APPENDIX

A. Cumulants Estimation

Adaptive estimation of cumulants can be implemented by
means of the method also used in [15]. We define

and the estimates of the respective moments based on sample
statistics as using samples. As-
suming we have available at iteration 0, for
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(a)

(b)

Fig. 6. MSE performance for the HOS (blind) algorithm and the QR-RLS (perfectly trained) filter. The delay interval for the three channels are (a)
0.15, 0.25, and 0.5 and (b) 0.15, 0.5, and 0.75.

, at iteration we can update
from as follows:

where and
Similarly, for the second-order moments, we can

write

(22)

Evidently, we can obtain the cumulants estimation at pointas
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Fig. 7. Frequency response of the discrete-time system (channels-combining scheme) with no filter and after convergence (700 symbols) of the complex
weights of the baseband filter (solid). Also, the response after 500 samples (dotted) is provided. The channel is in the same condition as Fig. 4.

Finally, , the estimate of based on
samples, can be obtained as

(23)

and an obvious organization of these quantities into the matri-
ces of the system (19) gives the estimates and

B. Proof of (14)

From the cumulant properties, we can write for the follow-
ing second-order cross moments:

(24)

This expression is evidently different from zero only for
Considering that

(25)

that is,

and equating (25) and (24), we obtain (14).

C. Proof of (18)

Let us consider the transform of these two sequences

and
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Fig. 8. Tracking performances of the QR approach with equal SNR’s on all discrete channels (30 dB). The channel is varying, and the product maximum
Doppler frequency-symbol period is equal to 0.0006. Delay intervals are 0.15, 0.35, and 0.75. The forgetting factor is equal to 0.97. The solid curve is the
trace of the real part of the weightw2(0) using the adaptive algorithm, and the dashed curve is the optimum performance.

(the transform of a sequence is indicated as )
explicitly

(26)

and

where and
Eliminating , we can express the-domain relation-
ship

so that in the time domain

(27)

with Substituting (14) for
and (17) for , we obtain

the set of equations (18).

D. The QR-RLS Adaptive Algorithm

The problem we have to solve at every step is in the case
of perfect knowledge of the transmitted sequence

(28)

with

The normal equationsare now

Following the same discussion for the
HOS case of Section V, with the difference that now the

QR decomposition is operated as and

, we can express the algorithm as
follows.

1) Compute the prediction error
.

2) Form the matrix
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Fig. 9. Bit-error rate performance on a time-varying channel (the product maximum Doppler frequency-symbol period is equal to 0.0006) for different
numbers of elements and weights. Delay intervals are 0.15, 0.25, and 0.35. The forgetting factor is 0.98. Solid curves are the performance of the HOS-based
method, and dashed curves are the performance of the perfectly trained QR-RLS method.

3) Sweep the bottom part of this matrix using Givens
rotations.

4) Solve the triangular system
5) Obtain
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